

Article

New astronomical observatory design for the detection and tracking of satellite objects: the Satellite Robotic Observatory (SRO)

Francisco Espartero ¹, Javier Cubas ¹, David Nespral ² and Santiago Pindado ^{1,*}

¹ Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM). Universidad Politécnica de Madrid (UPM). Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio (ETSAE). 28040 Madrid

² Instituto de Astrofísica de Canarias (IAC). Calle Vía Láctea, s/n, 38205 La Laguna, Santa Cruz de Tenerife

* Correspondence: santiago.pindado@upm.es (Santiago Pindado)

Abstract: Robotic Astronomical Observatories (RAOs) have provided very good results in different research projects in Astrophysics. Their applications in the detection, tracking, and identification of near-Earth objects have contributed to the identification of potentially dangerous objects for our security, such as NEOs, NEAs, Asteroids, and Comets, whose trajectory changes can cause an impact on our planet. If advances in astrometry techniques (measuring the position and trajectory of Earth-orbiting objects) and photometry (variation of light curves), are considered together with the new sensors that work in the optical and near-infrared spectral ranges, a new observatory system that allows detecting nearby satellite objects in different spectral ranges and with better defined optics can be developed. The present paper describes the design of a new observatory applied to the surveillance and tracking of satellites and other debris objects, the Satellite Robotic Observatory (SRO). Starting from general constraints from astronomy observatories, the design process has been determined, considering the main objectives, the necessary sensors, and several technical improvements that have contributed to a final configuration proposed for the Satellite Robotic Observatory (SRO). The result is the design of a portable observatory model that can host at least two sensors to track and monitor satellite objects simultaneously.

Keywords: space debris; orbit determination; satellite tracking; space surveillance

Citation: To be added by editorial staff during production.

Academic Editor: Firstname Lastname

Received: date

Revised: date

Accepted: date

Published: date

Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

The study of objects close to our planet (such as Near-Earth Objects -NEOs-, Near-Earth Asteroids -NEAs-, satellites and comets), and the physical phenomena associated with their entry into the Earth's atmosphere began in the 1860s with the observations of A.S. Herschel [1]. Since the late 19th century, photographic techniques have been used to observe meteors [2]. From the 1950s onwards, the study of the emission spectra produced in the atmospheric entry process of these natural objects began [3]. Furthermore, it can be mentioned that several new video techniques have been developed to study these phenomena within the last half century [4–7].

In contrast to photographic image captures, video techniques have allowed recording relatively faint meteors [5], so celestial objects with an apparent visual magnitude range of 3 ± 1 can be captured [8]. The light emitted by meteors during the ablation process in the Earth's atmosphere makes it possible to study, from at least two stations, their trajectory, the radiant of origin, and the orbit of their progenitor in the Solar System [9]. These studies are known as astrometry, where the variation of the object's position is measured, and photometry, where the variation of its light curve is studied.

Astronomical observatories protect the optical equipment and sensors housed within them and allow a configuration that enables them to work autonomously [10] or remotely.

In the last decades, Robotic Astronomical Observatories (RAOs) have evolved significantly [11] and in some cases, when the equipment and sensors are smaller (large field and short-focal telescopes), a smaller RAO is chosen, whose techniques and procedures are similar to those of large observatories [12,13]. Reducing the size of the RAO reduces the cost and infrastructure required for it to operate effectively. This new generation of small RAOs has led to significant advances in numerous research projects, such as the early detection of potentially hazardous near-Earth objects and asteroids (NEO's and NEA's), the study of meteors and meteorites, and even the detection of supernovae and gamma-ray bursts [14–16]. These research works have been developed, thanks to the possibility of having several RAO's in different geographical locations, which is a considerable advantage, having a greater number of hours of observation and monitoring of these phenomena.

The investigation of minor Solar System bodies and near-Earth objects has traditionally been performed with very bright, low focal length, wide-angle optical systems [17,18]. The objective has been to capture images of a wide region of the firmament, to detect meteoroids and other objects coming from asteroids whose orbit and trajectory were unknown [19]. These optical devices and sensors have been located in astronomical observatories whose technical characteristics prevented the inclusion of additional optical systems (Figure 1). The traditional RAO has always had a dome on its roof, so only one telescope could be installed. This very limited configuration does not allow for additional equipment, since the observation window of the dome only allows working with a single optic and sensor.

Figure 1. Classic design of a Robotic Astronomical Observatory (RAO) for a telescope and dome (a). Image of an RAO at the Sierra Nevada Astronomical Observatory (b).

In recent decades, devices and sensors to capture images of natural objects close to our planet, in the same space or astronomical observatory, have expanded [20,21], so that CCD (Charge-Coupled Device) sensors to capture images in the optical and near-infrared range have had a prominent role.

For a RAO to accommodate several pieces of equipment, with different optics and sensors, the design of the RAO itself has had to be modified [22]. A new model without a dome, with a retractable or roll-off canopy, provides a clear sky from the horizon to the zenith (Figure 2) without any obstacles or limitations, which is an important advantage when it is necessary to detect objects that are close to the horizon.

With these systems, different images of the same object can be obtained, improving the accuracy of its orbit calculation, trajectory, and even determining its parent object [19,23]. If at least two sensors with different optics are available, the RAO activities can be diversified and expanded. The combination of several optics and sensors allows the

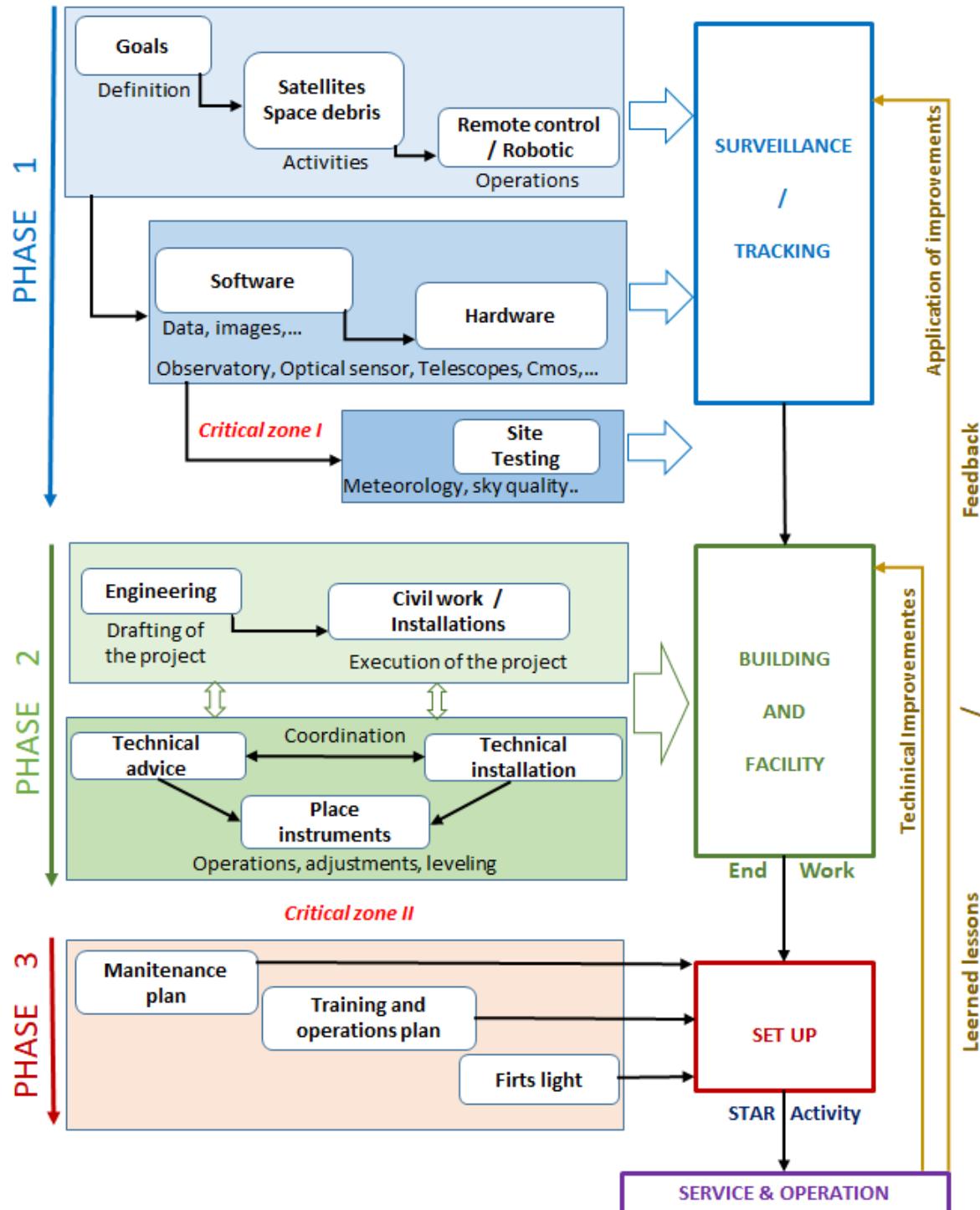
capture of wide-field and even all-sky images, to monitor phenomena in a wide region of the sky, and also the tracking of other celestial objects, with higher precision and lower

apparent brightness.

Figure 2. CESAR Astronomical Observatory. ESA-ESAC (Villafranca del Castillo-Madrid). RAO with open roll-off roof (a). S/C 12" telescopes (each one on one of the two pilars displayed in the picture) at f/10 and two CCD cameras, Atik 314 L+ and Atik 4400 (b). RAO with closed roll-off roof (c).

In the present paper, the design of a new type of ground-based observatory, the Satellite Robotic Observatory (SRO), capable of both tracking and surveillance of a satellite in Earth's orbit, is described from some initial constraints (Section 2) to the instrumentation it should comprise and the possible results (Section 3). A general discussion is also included in Section 3. Finally, the conclusions are summarized in Section 4.

2. Design constraints and methodology for the design of a Satellite Robotic Observatory (SRO)


To design an observatory that can perform surveillance and tracking of Earth-orbiting objects at low/middle altitude (that is, satellites and space debris), three fundamental issues should be taken into account:

- An effective design project must be developed according to the primary objectives for which the observatory is needed: tracking and surveillance;
- Selection of the optimal location and orientation, so that the telescopes and sensors can detect the objects of interest (in different orbits such as Low Earth Orbits -LEOs-, Medium Earth Orbits -MEOs-, or Geosynchronous Equatorial Orbits -GEOs-);
- Selection of the optical equipment, sensors, mounts, optical accessories and software to obtain images and their processing provides the data of our interest, such as orbital parameters, for identification or light curves for characterization.

2.1. Development of a Satellite Robotic Observatory (SRO)

109
110
111
112
113
114

The premises stated above can be developed in three different phases (see Figure 3). In Phase 1 the objectives to be pursued must be defined, such as detecting, monitoring, and tracking space debris and artificial satellites in LEOs, MEOs and GEOs. Next, it must be specified how these activities will be developed, considering whether it is intended to work remotely or with human presence.

Figure 3. Sequential diagram of operations to design a Satellite Robotic Observatory (SRO).

115
116

The initial objectives must give way to the selection of the required optical instrumentation, its mounts and movement systems, CCD (Charge-Coupled Device) cameras, CMOS (Complementary Metal-Oxide-Semiconductor) image sensors, and other auxiliary elements of measurement, optics or image capture. It is also very important to detail the control systems of these devices, such as the necessary computer hardware and software that should provide the required information through the captured images.

It is important to bear in mind that all sensors and equipment of the SRO must be compatible with the systems present in the installations. Consideration should be given to the type of roof required (roll-off, folding roof, vault...), Uninterruptible Power Supply (UPS), remote control systems and the incorporation of a weather station, which can regulate and control the operation of the observatory in case of inclement weather [24].

Once these first steps have been completed, an important step follows, since all the initial technical premises must be incorporated into the data obtained from the site-testing (see the following subsection) of the possible locations. The decision taken at this point will be fundamental for the correct operation of the SRO.

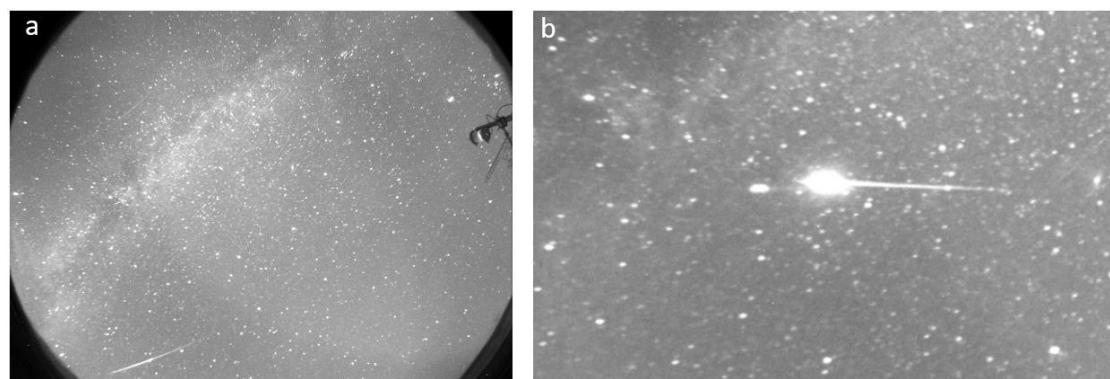
In Phase 2, it is required to address the needs of the SRO in terms of infrastructure and adaptations to civil works, which, once defined, will need to combine technical and scientific criteria to successfully address the second important step [25]. At this point, it is necessary to define the correct use and location of the optical systems and sensors. By sharing space within the same SRO, it is necessary to define how each piece of equipment will work, its correct location and orientation, and even establish a regime of priorities of use for surveillance and tracking of the objects to be selected.

In Phase 3 it is crucial to face the development of a detailed maintenance plan so that the SRO can operate normally and not suffer major breakdowns or shutdowns. It is also essential to establish a training and commissioning plan that guarantees and trains the personnel necessary for its operation.

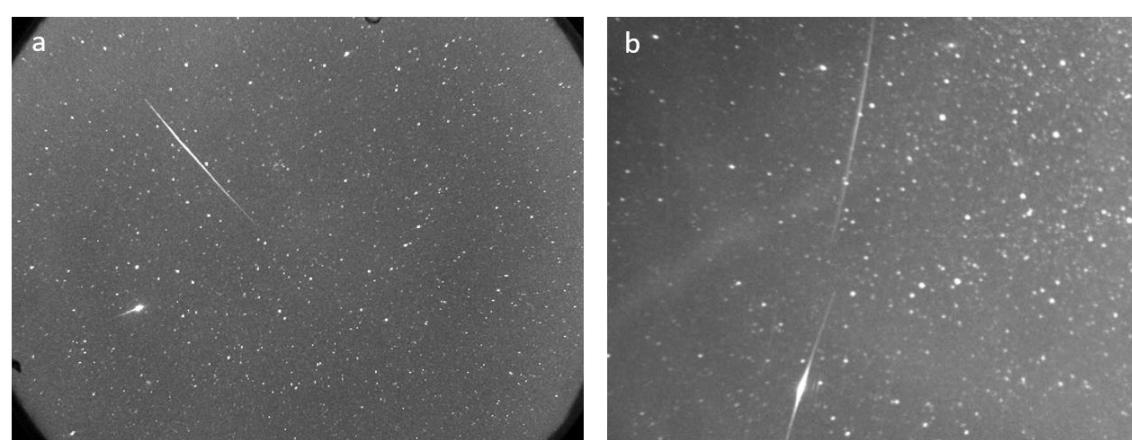
Finally, it is considered that important information can be obtained on the degree to which the objectives proposed at the beginning of the project have been met. By analyzing these results, new lessons will be learned, which will serve as feedback for future improvements and updates.

2.2. Site-testing

The correct operation of an SRO will depend on its location and orientation. Therefore, it is necessary to study the characteristics of the possible places where the SRO is to be located, since the optics and sensors that it houses will be able to offer a good result if the place of installation is well chosen. To this end, the meteorological characteristics of the site, climatic conditions, altitude and other technical elements such as the availability of a good electrical connection, data network, and good accessibility must be taken into account [26].


The evaluable parameters for determining the best location of an SRO should not be as demanding for SRO projects. The focus should be on what can affect the astrometric determination of an object or the analysis of its light curves. If we take these assumptions into account, we can reduce the site-testing to the following parameters [27]:

- From the meteorological point of view, it is essential to look for a place with a very low index of relative humidity, cloudiness, and rainfall. Little or moderate wind [28,29]. Regarding environmental values, very little or no light pollution and little environmental pollution (very little dust in suspension) are required, in addition to a good quality of sky brightness (not less than 19 mag/arcsec²);
- Regarding the orography, it is advisable to look for a high place, if possible above the thermal immersion layer [30], so that the sensors can work, in addition to the optical range, in the near-infrared (between 3.400 and 10.000 Å). It is also very important to have the whole horizon clear, the most relevant area being a good south orientation, spanning from east to west. This will ensure good access to the geostationary ring at any time of the year.


3. Final configuration of the Satellite Robotic Observatory (SRO)

To determine the trajectory of artificial satellites, several image captures are necessary. Near-Earth Objects (NEAs) in Low Earth Orbits (LEOs) can be determined with very short exposure times (less than one second) and wide-field optical lenses, but for more distant objects of lower apparent brightness, longer exposure times and smaller fields are required [21,25]. The combination of these techniques makes it possible to cover different areas of the firmament and allows a detailed study of the objects of interest, satellite constellations and even space debris [31]. This format allows for a complete surveillance of the entire sky on any clear night.

Optical equipment dedicated to imaging meteors or satellite objects comes in different formats. They can be configured to image the whole sky, with fisheye optics (Figures 4 and 5), or to image a large star field, which can comprise several degrees of extension [30], when imaging objects in low orbits. In this case the optics may be satisfied with a short-focal, wide-field objective. When the objective is to capture an image of a celestial object of lower brightness and a more distant orbit, a telescope with a smaller field of view and larger focal length will be chosen. The following are the equipment with their optics and sensors (Table 1) used to capture images of natural objects, which during their entry into the Earth's atmosphere become visible during their ablation process (Figure 4) and which have also captured images of artificial objects (Figure 5).

Figure 4. Image of a meteor during its entry into the Earth's atmosphere, captured with sensor 1 and 20" exposure (a). Image of bolide (meteor with an apparent brightness magnitude greater than the planet Venus) captured with sensor 2 with a 30 " exposure (b).

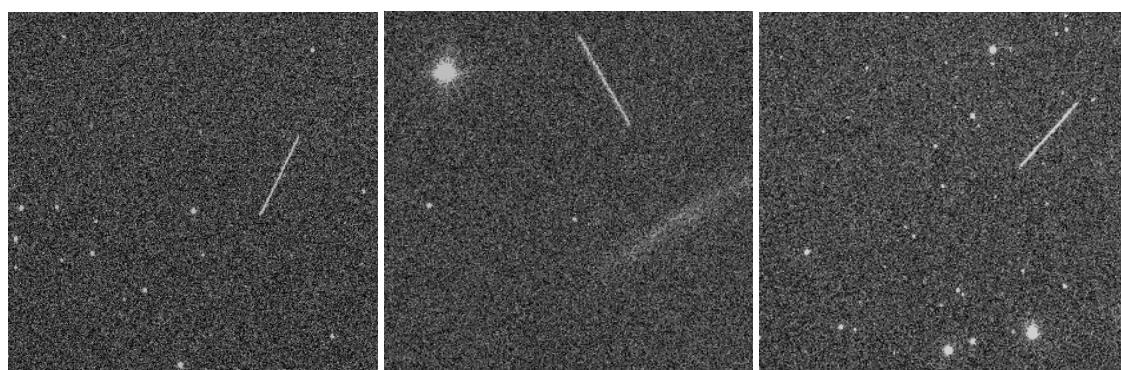

Figure 5. Image of the trajectory of an artificial satellite captured by sensor 1 with a 10 " exposure (a). Image of a satellite object and an Iridium captured by sensor 2 with an 8 " exposure (b).

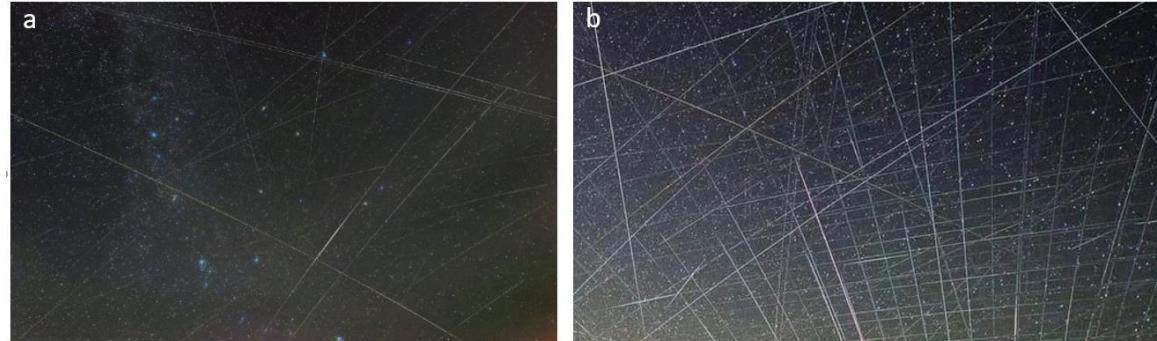
Table 1. CCD monochrome sensors, used for large field image acquisition.

CCD	Sensor	Resolution (pixel)	Format (mm)
Atik 314 L+	Sony ICX 285 AL	1392 x 1040	10.2 x 8.3
Atik 11000	Kodak KAI 11002	4008 x 2672	37.25 x 25.7
CCD 1100	Teledyne e2V 231-84	4096 x 4112	61.4 x 61.7

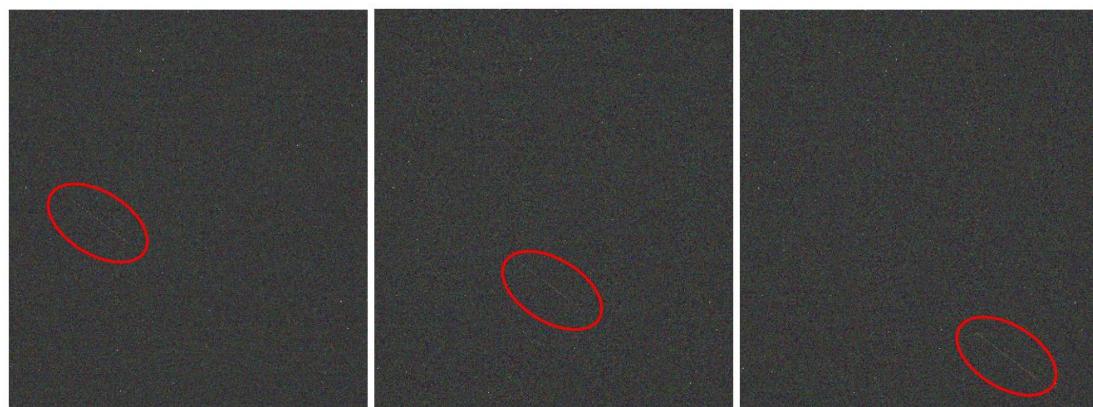
Image download times vary from 4.2 seconds for the Atik 314 L+ to 27 seconds for the Atik 11000. Although this second CCD (Charge-Coupled Device) camera is capable of capturing objects whose apparent brightness magnitude is greater than 16, the long download times make it difficult to continuously track satellite objects in low orbits. The images from Figure 6 provided by CCD 1100 instrument at the IAC80 Telescope of the *Instituto de Astrofísica de Canarias* (IAC) belong to three different satellites, which for security reasons cannot be identified. These images have been obtained raw without any processing. The image quality is remarkable, and the trajectory of the satellite object can be perfectly identified.

When using CMOS (Complementary Metal-Oxide-Semiconductor) format sensors, download times are drastically reduced. They are very short and even less than a second when capturing a LEO satellite. In addition, they are much more sensitive to light, which makes it possible to manufacture smaller devices with better performance. Table 2 below shows the sensors used to capture images of satellite objects, followed by some of the results obtained in the images of Figures 6, 7 and 8.

Figure 6. Satellite traces captured with the Instituto de Astrofísica de Canarias IAC80 telescope, Smith-Cassegrain configuration and 82cm field and with an exposure time of 3 seconds for each image.


Table 2. CMOS monochrome sensors, used for wide-field image captures.

CCD	Sensor	Resolution (pixel)	Format (mm)
ZWO ASI071	Sony IMX 071	4944 x 3284	78 x 86.8
ZWO ASI183	Sony IMX 183	5496 x 3672	62 x 36

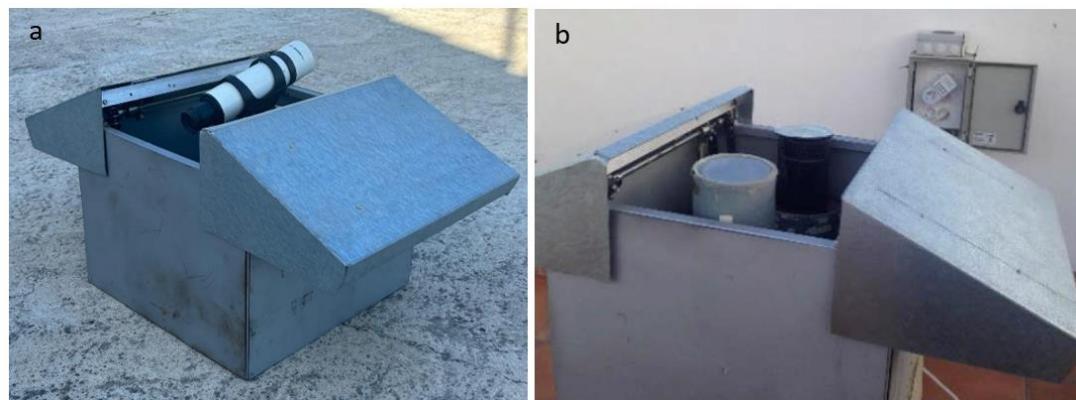

In the images included in Figure 7, numerous traces corresponding to the trajectories of several satellite objects can be seen. The photograph has been formed by superimposing several long exposure images and the result clearly indicates the difficulty of obtaining sharp images of an object by this method. Looking at the image in detail, it is not advisable to capture images with long exposure times, due to the large number of satellite objects that exist at the present time.

In the sequence of images displayed in Figure 8, the traces of a LEO satellite, corresponding to the ONEweb constellation, can be seen. A very faint sky background can be

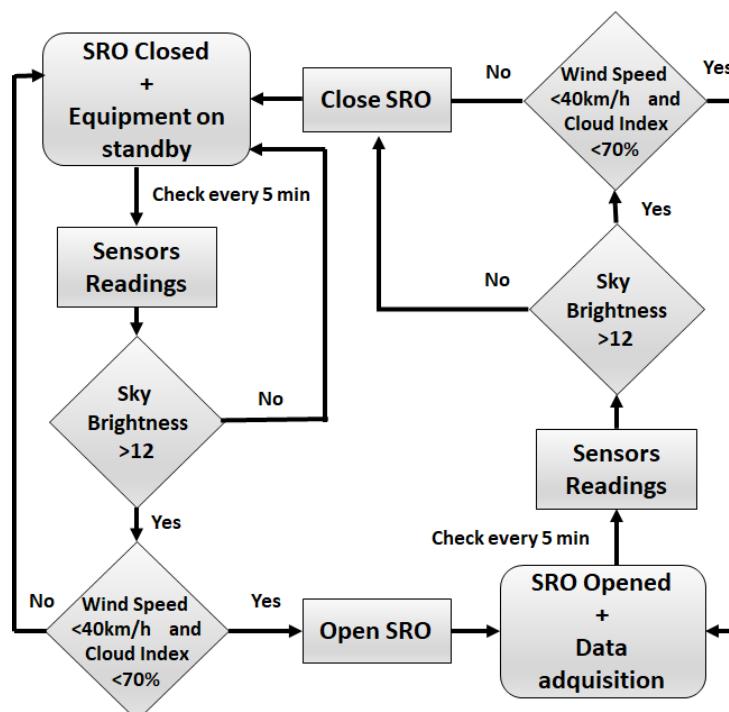
seen, due to the short exposure time of each image. The optics used for these sensors have been two different models of telescopes. An apochromatic refractor of 80mm aperture at f/4.5 for sensor 1 and a 10" Smith-Cassegrain at f/10 for sensor 2. These optics, together with their mounts are not very fast and limit the exposure times to capture images, especially of satellites in low orbits.

Figure 7. Composite photographs by stacking several 25" exposure images, with a total integration time of 4h 12' (a) and 6h 03' (b). ZWO ASI 071MC Pro camera (sensor 1) and William Optics 80 mm f/4.8 refracting telescope.

Figure 8. 1.5" exposure image sequence of a LEO satellite. ZWO ASI 183 Monochrome (sensor 2) and 10" S/C telescope at f/10 with altazimuth mount.


3.1. Discussion

Resident Space Objects (RSOs) have very different orbits and depending on their height and size, different sensors and optics must be used to capture images accurately. The detection of satellite objects, the tracking, the determination of their orbital parameters or the study of their light curve, will depend on whether a space surveillance, tracking or characterization of these objects is intended [7]. In any case, at least two types of sensors and optics, which can be complementary, should be available. It is very important to have wide-field imaging, where objects in MEO (Medium Earth Orbit) and LEO orbits can be detected and tracked, and at the same time, have sufficient capability to accurately track other objects. These two systems can perform surveillance and tracking tasks together [32].


The best-performing optics for a large field of view are configured with an Astrograph, which is a wide-field telescope with a very short focal length (between f/2 and f/3). For follow-up work, a telescope with a smaller field and a focal length between f/5 and f/8 is recommended. This gives greater accuracy and range, as well as detecting fainter objects. CMOS cameras have given better results and performance than CCD cameras, as

can be seen in Figures 5, 6 and 7. They have very fast times (while a discharge camera cannot capture images), better sensitivity and even lower noise because their operating temperature can be much lower [33,34]. Additionally, it can be said that a CCD camera (2048 x 2048 pixel sensor) installed on the 130-cm diameter International Liquid Mirror Telescope can detect Resident Space Objects (RSOs) up to 50 cm in diameter at an altitude of 1000 km [35], while a CMOS camera installed on an 18-cm diameter telescope has been shown to be able to detect 10 cm objects in LEO orbits [36].

Optical equipment and sensors must be installed in an SRO that can guarantee their safety and proper operation in the event of inclement weather. It shall allow for two or more equipment to operate simultaneously inside the SRO. For this purpose, the SRO must be completely open and have a clear horizon in any direction (Figure 9). It must also have an autonomous, safe and efficient control system, allowing automatic and remote operation.

Figure 9. Prototype of a Satellite Robotic Observatory (SRO), capable of housing a refracting telescope (left) or two wide-field and all-sky objectives (a). The optical systems of this SRO integrate sensors that allow capturing images of artificial satellites in different types of orbits (b).

Figure 10. Sequential diagram of SRO operation (see also Figure 9).

The SRO proposed in Figure 9 has been tested as a prototype and has given excellent results (the final dimensions of the SRO should be similar to those of a 10-foot shipping container). After implementing some design improvements and corrections of synchronized opening and closing of the roof, it has been completed with a new control system, so that the SRO can close at dawn and open its roof at dusk, based on a photometer whose threshold is at 12 magnitudes of apparent sky brightness [22]. This value marks the beginning of nighttime activity and its end with the arrival of dawn. In this way, the equipment is protected from the sun's rays during the day.

The SRO incorporates a complete weather station. In case of wind speed above 40 km/h and/or relative humidity above 70%, the SRO acts on the sensors and telescopes to put them on "standby", while closing the roof to protect the equipment. When weather conditions improve, the SRO reopens its roof and returns the sensors to normal activity (Figure 10). Image captures are downloaded to a hard disk and transferred via fiber optics to the remote operator. The SRO PC integrates all sensor and telescope systems via ASCOM protocol. With this data it is possible tracking and classification of RSOs [37,38], and determine their orbit parameters [39] and even their attitude [40].

Finally, while it is true that tracking Resident Space Objects (RSOs) is generally better at orbiting observatories than at ground-based observatories (space-based telescopes can track smaller objects [41], and they are less affected by inaccuracy caused by meteorological conditions [39]), the proposed SRO offers some significant advantages. It can be moved as an industrial container and placed wherever it is most convenient, networking being also possible.

4. Conclusions

In this paper, the design of a Satellite Robotic Observatory (SRO) for the detection, surveillance and tracking of satellite objects has been presented and described. The SRO integrates two or more sensors with different optics and capabilities, allowing to have a complete system to detect, identify, and perform tracking and space surveillance on any type of satellite object in different orbits and differences in brightness and sizes. The incorporation of wide-field and short focal optics on fast mounts, allows effective tracking and continuous tracking of any object (the German equatorial mounts need the field rotator at the zenith and are not recommended for this purpose). In both cases, CMOS sensors have been chosen for their better quality and performance than CCDs.

The SRO described in this paper has a simple and easy-to-operate design. It was derived from the well-known configurations of Robotic Astronomical Observatories (RAOs). Substantial improvements have been incorporated in the design such as the new sensors and equipment. Allowing to have the horizon in any clear and in any direction.

Among the characteristics of the proposed SROs are it is possible to underline the following ones:

- They are modular and have standard dimensions.
- These new observatory models are designed with a robust structure, which allows transport operations to be carried out without affecting the equipment inside.
- They are easy to transport and move. Therefore, the possibility of networking operation is possible.
- The configuration allows future expansions, so that two or more modules can be connected without affecting the previously established configurations or equipment.
- The cost is reduced when compared with a standard Robotic Astronomical Observatory (RAO).

Author Contributions: Conceptualization, F.E.; methodology, F.E. and S.P.; validation, F.E., J.C., D.N. and S.P.; investigation, F.E.; resources, F.E. and D.N.; data curation, F.E. and D.N.; writing—original draft preparation, F.E. and S.P.; writing—review and editing, F.E. and S.P.; visualization,

F.E., J.C., D.N. and S.P.; supervision, J.C. and S.P. All authors have read and agreed to the published version of the manuscript.	326
Funding: This research received no external funding.	328
Data Availability Statement: The data supporting this study's findings are available from the authors upon reasonable request.	329
Acknowledgments: The contribution of images, sensors and the different RAO and SRO models provided by ECS Engineering & Astrophysics and the telescopic operations team of Teide Observatory from <i>Instituto de Astrofísica de Canarias</i> is gratefully acknowledged.	331
Conflicts of Interest: The authors declare no conflicts of interest.	334
References	335
1. Millman, P.M. A general survey of meteor spectra. <i>Smithson. Contrib. to Astrophys.</i> 1963 , <i>7</i> , 119–127.	336
2. Millman, P.M. One Hundred and Fifteen Years of Meteor Spectroscopy. In Proceedings of the Symposium-International Astronomical Union; 1980; Vol. 90, Solid, pp. 121–128.	337
3. Ceplecha, Z.; Borovička, J.; Elford, W.G.; ReVelle, D.O.; Hawkes, R.L.; Porubčan, V.; Šimek, M. Meteor Phenomena and Bodies. <i>Space Sci. Rev.</i> 1998 , <i>84</i> , 327–471, doi:10.1023/A:1005069928850.	339
4. Hemenway, C.L.; Swider, A.; Bowman, C. Meteor Spectroscopy Using an Image Orthicon. <i>Can. J. Phys.</i> 1971 , <i>49</i> , 1361–1364, doi:10.1139/p71-161.	341
5. Millman, P.M.; Clifton, K.S. SEC Vidicon Spectra of Geminid Meteors, 1972. <i>Can. J. Phys.</i> 1975 , <i>53</i> , 1939–1947, doi:10.1139/p75-243.	343
6. Borovička, J.; Boček, J. Television spectra of meteors. <i>Earth. Moon. Planets</i> 1995 , <i>71</i> , 237–244, doi:10.1007/BF00612965.	345
7. Zender, J.; Koschny, D.; Witasse, O.; Knöfel, A.; Trautner, R.; Díaz del Río, J.; Campbell-Brown, M. Video intensified camera setup of visual and meteor spectroscopy. In Proceedings of the Proceedings of the International Meteor Conference, 22nd IMC, Bollmannsruh, Germany, 2003; 2004; pp. 163–167.	346
8. Madiedo, J.M.; Espartero, F.; Trigo-Rodríguez, J.M.; Castro-Tirado, A.J.; Pujols, P.; Pastor, S.; de los Reyes, J.A.; Rodríguez, D. Observations of the Quadrantid meteor shower from 2008 to 2012: orbits and emission spectra. <i>Icarus</i> 2016 , <i>275</i> , 193–202.	349
9. Ceplecha, Z. Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks. <i>Astron. Institutes Czechoslov. Bull. (ISSN 0004-6248)</i> , vol. 38, July 1987, p. 222-234. 1987 , <i>38</i> , 222–234.	351
10. Querci, F.R.; Querci, M. Robotic telescopes and networks: New tools for education and science. <i>Astrophys. Space Sci.</i> 2000 , <i>273</i> , 257–272.	353
11. Castro-Tirado, A.J. Robotic autonomous observatories: a historical perspective. <i>Adv. Astron.</i> 2010 , <i>2010</i> , 570489.	355
12. Espartero, F.Á.; Martínez, G.; Frías, M.; Montes Moya, F.S.; Castro-Tirado, A.J. Autonomous spectrographic system to analyse the main elements of fireballs and meteors. <i>Earth, Planets Sp.</i> 2018 , <i>70</i> , 1–7.	356
13. Espartero, F.; Frías, M.; Martínez, G.; Castro-Tirado, A.J. Autonomous Mini Observatory for Meteor Spectrography. In Proceedings of the Revista Mexicana de Astronomía y Astrofísica Conference Series; 2019; Vol. 51, pp. 131–134.	358
14. Pravdo, S.H.; Rabinowitz, D.L.; Helin, E.F.; Lawrence, K.J.; Bamberg, R.J.; Clark, C.C.; Groom, S.L.; Levin, S.; Lorre, J.; Shaklan, S.B. The Near-Earth Asteroid Tracking (NEAT) Program: An automated system for telescope control, wide-field imaging, and object detection. <i>Astron. J.</i> 1999 , <i>117</i> , 1616.	360
15. Rajan, P.; Burlina, P.; Chen, M.; Edell, D.; Jedynak, B.; Mehta, N.; Sinha, A.; Hager, G. Autonomous On-board Near Earth Object Detection. In Proceedings of the 2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR); IEEE, 2015; pp. 1–10.	363
16. Veres, P.; Bhat, P.N.; Briggs, M.S.; Cleveland, W.H.; Hamburg, R.; Hui, C.M.; Mailyan, B.; Preece, R.D.; Roberts, O.J.; von Kienlin, A. Observation of inverse Compton emission from a long γ -ray burst. <i>Nature</i> 2019 , <i>575</i> , 459–463.	366
17. Borovička; J. Astrometry with all-sky cameras. <i>PAICz</i> 1992 , <i>79</i> .	368

18. Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M. Ground-based optical observation system for LEO objects. *Adv. Sp. Res.* **2015**, *56*, 414–420. 369

19. Madiedo, J.M. Robotic systems for the determination of the composition of solar system materials by means of fireball spectroscopy. *Earth, Planets Sp.* **2014**, *66*, 1–9. 370

20. Kosiarek, M.; Mansfield, M.; Brothers, T.; Bates, H.; Aviles, R.; Brode-Roger, O.; Person, M.; Russel, M. SAURON: The Wallace Observatory Small AUtonomous Robotic Optical Nightwatcher. *Publ. Astron. Soc. Pacific* **2017**, *129*, 75001. 371

21. Pepper, J.; Pogge, R.W.; DePoy, D.L.; Marshall, J.L.; Stanek, K.Z.; Stutz, A.M.; Poindexter, S.; Siverd, R.; O'Brien, T.P.; Trueblood, M. The Kilodegree Extremely Little Telescope (KELT): A Small Robotic Telescope for Large-Area Synoptic Surveys. *Publ. Astron. Soc. Pacific* **2007**, *119*, 923. 372

22. Espartero, F.; Frías, M.; Martínez, G.; Pérez, A. The Pro-Am Observatory. *RevMexAA* **2018**. 373

23. Espartero, F.A.; Madiedo, J.M. The Northern ω -Scorpiid meteoroid stream: orbits and emission spectra. *Earth, Moon, Planets* **2016**, *118*, 81–89. 374

24. Hicks, J.S. *Building a Roll-Off Roof Or Dome Observatory: A Complete Guide for Design and Construction*; Springer, 2015; ISBN 1493930117. 375

25. Moore, P. Book Review: Small astronomical observatories/Springer-Verlag, 1996. *Irish Astron. journal*, vol. 25, no. 1, p. 102 **1998**, 25, 102. 376

26. McInnes, B.; Walker, M.F. Astronomical site testing in the Canary Islands. *Publ. Astron. Soc. Pacific* **1974**, *86*, 529. 377

27. Murdin, P. Nighttime skies above the Canary Islands. *Vistas Astron.* **1985**, *28*, 449–465. 378

28. Mahoney, T.; Muñoz-Tuñón, C.; Varela, A.M. GTC site-testing campaign: Meteorology. *New Astron. Rev.* **1998**, *42*, 417–424, doi:10.1016/S1387-6473(98)00045-1. 379

29. Muñoz-Tuñón, C.; Varela, A.M.; Mahoney, T. Homogeneity of image quality at the Roque de los Muchachos Observatory. *New Astron. Rev.* **1998**, *42*, 409–416, doi:10.1016/S1387-6473(98)00044-X. 380

30. Espartero Briceño, F.Á. Sistemas astronómicos de gran campo y su aplicación al estudio de meteoroides en la atmósfera terrestre, Universidad Complutense de Madrid, 2018. 381

31. Potter, A.E. Ground-based optical observations of orbital debris: A review. *Adv. Sp. Res.* **1995**, *16*, 35–45. 382

32. Zhao, G.; Liu, L.; Li, B.; Li, Z.; Sang, J. An orbit determination approach to associating optical tracklets of space objects. *Acta Astronaut.* **2022**, *200*, 506–523. 383

33. Wang, W.L.; Lin, S. CMOS sensor for RSI applications. In Proceedings of the Earth Observing Missions and Sensors: Development, Implementation, and Characterization II; SPIE, 2012; Vol. 8528, pp. 16–29. 384

34. Fossum, E.R.; Hondongwa, D.B. A review of the pinned photodiode for CCD and CMOS image sensors. *IEEE J. electron devices Soc.* **2014**. 385

35. Pradhan, B.; Hickson, P.; Surdej, J. Acta Astronautica Serendipitous detection and size estimation of space debris using a survey zenith-pointing telescope. *Acta Astronaut.* **2019**, *164*, 77–83, doi:10.1016/j.actaastro.2019.07.008. 386

36. Yanagisawa, T.; Kurosaki, H.; Oda, H. Detection of LEO Objects Using CMOS Sensor. *Trans. Japan Soc. Aeronaut. Sp. Sci. Aerosp. Technol. Japan* **2016**, *14*, 51–55. 387

37. Dave, S.; Clark, R.; Lee, R.S.K. RSOnet: An Image-Processing Framework for a Dual-Purpose Star Tracker as an Opportunistic Space Surveillance Sensor. *Sensors* **2022**, *22*, doi:10.3390/s22155688. 388

38. Qashoa, R.; Lee, R. Classification of Low Earth Orbit (LEO) Resident Space Objects' (RSO) Light Curves Using a Support Vector Machine (SVM) and Long Short-Term Memory (LSTM). *Sensors* **2023**, *23*, doi:10.3390/s23146539. 389

39. Riel, T.; Sinn, A.; Schwaer, C.; Ploner, M.; Schitter, G. Iterative trajectory learning for highly accurate optical satellite tracking systems. *Acta Astronaut.* **2019**, *164*, 121–129, doi:10.1016/j.actaastro.2019.07.012. 390

40. Clark, R.; Fu, Y.; Dave, S.; S K Lee, R. Resident space object (RSO) attitude and optical property estimation from space-based 410

light curves. <i>Adv. Sp. Res.</i> 2022 , <i>70</i> , 3271–3280, doi:10.1016/j.asr.2022.08.068.	411
41. Gruntman, M. Passive optical detection of submillimeter and millimeter size space debris in low Earth orbit. <i>Acta Astronaut.</i> 2014 , <i>105</i> , 156–170, doi:10.1016/j.actaastro.2014.08.022.	412
	413
	414

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

415
416
417